Tuesday, August 27, 2019

Python Data Structures

Python Data Structures:

 

Data structures refer to the collection or group of data in a particular structure.

 

 Below table illustration provides the information on python list, tuple, dictionary and set declaration and predefined methods.

Type:

List

Tuple

Dictionary

Set

Functionality/Definition:

àPython List is a collection of ordered elements.

 

àList values can be updated.

 

àAllows duplicate values.

àPython tuple is a collection of ordered elements, but values cannot be updated.

 

àAllows duplicate values

à Python Dictionary is a collection of unordered elements which are indexed.

 

àValues can be Updated.

 

àDoesn’t allow duplicate values.

àPython set is a collection of unordered elements but are unindexed.

 

àDoesn’t allow duplicate values.

Declaration:

[]

 

Example:

list = ["IN""US""GB"]

 

 

()

 

Example:

 

tuple = ["IN""US""GB"]

 

{}

 

Example:

 

dict = {
"Country”:"IN",
"Locale": "en_US"

}

 

{}

 

Example:

 

set= {1,2,3}

Or

set=set ([1,2,3])

Methods and syntax:

append()

list.append(item)

 

clear()

list.clear()

 

copy()

list2 = list.copy()

 

count()

list.count(element)

 

 

 

extend()

list.extend(list2)

 

 

index()

list.index(element)

 

insert()

list.insert(index, element)

 

pop()

list.pop(index)

remove()

list.remove(element)

 

reverse()

list.reverse()

 

sort()

list.sort()

 

count()

tuple.count(element)

 

index()

tuple.index(element)

 

 

clear()

dict.clear()

 

copy()

dict.copy()

 

fromkeys()

dict=dict.fromkeys(x,y)

 

get()

dict.get("Locale")

 

items()

dict.items()

 

 

keys()

dict.keys()

 

 

pop()

dict.pop("Country”)

 

 

popitem()

dict.popitem()

 

setdefault()

dict.setdefault("Country”,"IN",)

 

update()

dict.update("Locale ","es_MX”)

 

 

values()

dict.values()

 

add()

set.add("IN")

 

clear()

set.clear()

 

copy()

set.copy()

 

difference()

set.difference(set2)

 

diifernce_update()

set.difference_update(set2)

 

 

discard()

set.discard(value)

 

 

intersection()

set.intersection(set2)

 

 

intersection_update()

set.intersection_update(set2)

 

isdisjoint()

set.isdisjoint(set2)

 

issubset()

set.issubset(set2)

 

 

 

issuperset()

set.issuperset(set2)

 

pop()

set.pop()

 

remove()

set.remove(item)

 

symmetric_difference()

set.symmetric_difference(set2)

 

symmetric_difference_update()

set.symmetric_difference_update(set2)

 

union()

set.union(set2)

 

update()

set.update(set2)

 

 

 

 

1 comment:

ML-Model DecisionTree Example-IncomePrediction

DecisionTree -- IncomePrediction Decision Tree: Income Prediction ¶ In this l...